Abstract
AbstractWe study a selective sampling scheme in which survival data are observed during a data collection period if and only if a specific failure event is experienced. Individual units belong to one of a finite number of subpopulations, which may exhibit different survival behaviour, and thus cause heterogeneity. Based on a Poisson process model for individual emergence of population units, we derive a semiparametric likelihood model, in which the birth distribution is modeled nonparametrically and the lifetime distributions parametrically, and define maximum likelihood estimators. We propose a Newton–Raphson-type optimization method to address numerical challenges caused by the high-dimensional parameter space. The finite-sample properties and computational performance of the proposed algorithms are assessed in a simulation study. Personal insolvencies are studied as a special case of double truncation and we fit the semiparametric model to a medium-sized dataset to estimate the mean age at insolvency and the birth distribution of the underlying population.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献