Aprotic lithium air batteries with oxygen-selective membranes

Author:

Naqvi Asad A.,Zahoor Awan,Shaikh Asif Ahmed,Butt Faaz Ahmed,Raza Faizan,Ahad Inam UlORCID

Abstract

AbstractRechargeable batteries have gained a lot of interests due to rising trend of electric vehicles to control greenhouse gases emissions. Among all type of rechargeable batteries, lithium air battery (LAB) provides an optimal solution, owing to its high specific energy of 11,140 Wh/kg comparable to that of gasoline 12,700 Wh/kg. However, LABs are not widely commercialized yet due to the reactivity of the lithium anode with the components of ambient air such as moisture and carbon dioxide. To address this challenge, it is important to understand the effects of moisture on the electrochemical performance of LAB. In this review, the effects of ambient air on the electrochemical performance of LAB have been discussed. The literature on the deterioration in the battery capacity and cyclability due to operation in ambient environment and degradation of lithium anode due to exothermic reaction between lithium and water is reviewed and explained. The effects of using oxygen-selective membrane (OSM) to block moisture and $${\mathrm{CO}}_{2}$$ CO 2 contamination has also been discussed, along with suitable materials that can act as OSM. It is concluded that the utilization of OSM can not only make the safer operation of LAB in ambient air but could also enhance the electrochemical performance of LAB. Future direction of the research work required to address the associated challenges is also provided.

Funder

erasmus+

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Fuel Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3