Performance and emission analysis of a CI engine fueled with parsley biodiesel–diesel blend

Author:

Bitire Sarah Oluwabunmi,Jen Tien-ChienORCID

Abstract

AbstractPollution-induced environmental deterioration is one of the serious aspects that must be solved. As a result, biodiesel was made from a novel material (Parsley seed oil) through an alkali-induced transesterification reaction. The efficiency, as well as exhaust emission tests, were performed by running the prepared parsley biodiesel blends (mixture of biodiesel and diesel fuel in different proportions) in an engine. The ideal blend for enhancing engine performance was discovered to be B20, which displayed steady performance attributes without requiring any modifications to the diesel engine. The B20 parsley biodiesel blend had fewer emissions than diesel, notably hydrocarbons, and carbon monoxide except for nitrogen oxides and carbon dioxide. B20 Parsley blends were also shown to emit less pollution than other blends (B5 and B10). A high reduction in CO, CO2 and HC emissions for B20 was recorded at 33.9%, 29.73%, and 11.38% relative to diesel except for NOx. Brake-specific energy consumption decreases and thermal efficiency of the engine increases for all biodiesel blends. In addition, from the performance results, BTE and BSFC of B20 are relatively close to those of pure diesel fuel (B0). The use of parsley biodiesel as a diesel engine fuel was shown to be a promising strategy to promote the use of green fuels (biofuels from renewable materials) while simultaneously mitigating the release of toxic greenhouse gases from the combustion of fossil fuel.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Fuel Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference54 articles.

1. Maawa, W.N., Mamat, R., Najafi, G., De Goey, L.: Performance, combustion, and emission characteristics of a CI engine fueled with emulsified diesel-biodiesel blends at different water contents. Fuel 267, 117265 (2020)

2. W. WHO: WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization, Geneva (2020)

3. W. H. Organization: World Health Organization Coronavirus Disease (COVID-19) Dashboard. World Health Organization, Geneva (2020)

4. Bashir, M.F., et al.: Correlation between environmental pollution indicators and COVID-19 pandemic: a brief study in Californian context. Environ. Res. 187, 109652 (2020)

5. Kim, D., Chen, Z., Zhou, L.-F., Huang, S.-X.: Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 4(2), 75–94 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3