Abstract
AbstractSingle lithium-ion conducting polymer electrolytes are promising candidates for next generation safer lithium batteries. In this work, Li+-conducting Nafion membranes have been synthesized by using a novel single-step procedure. The Li-Nafion membranes were characterized by means of small-wide angle X-ray scattering, infrared spectroscopy and thermal analysis, for validating the proposed lithiation method. The obtained membranes were swollen in different organic aprotic solvent mixtures and characterized in terms of ionic conductivity, electrochemical stability window, lithium stripping-deposition ability and their interface properties versus lithium metal. The membrane swollen in ethylene carbonate:propylene carbonate (EC:PC, 1:1 w/w) displays good temperature-activated ionic conductivities (σ ≈ 5.5 × 10–4 S cm−1 at 60 °C) and a more stable Li-electrolyte interface with respect to the other samples. This Li-Nafion membrane was tested in a lithium-metal cell adopting LiFePO4 as cathode material. A specific capacity of 140 mAhg−1, after 50 cycles, was achieved at 30 °C, demonstrating the feasibility of the proposed Li-Nafion membrane.
Funder
Sapienza Università di Roma
National Recovery and Resilience Plan (PNRR), Mission 4 Component 2 Investment 1.3, funded from the European Union - NextGenerationEU
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献