Review of flexible perovskite solar cells for indoor and outdoor applications

Author:

Goje Adamu Ahmed,Ludin Norasikin AhmadORCID,Fahsyar Puteri Nor Aznie,Syafiq Ubaidah,Chelvanathan Puvaneswaran,Syakirin Abu Dzar Al-Ghiffari,Teridi Mohd Asri,Ibrahim Mohd Adib,Su’ait Mohd Sukor,Sepeai Suhaila,Yasir Ahmad Shah Hizam Md

Abstract

AbstractPerovskite solar cells (PSCs) have shown a significant increase in power conversion efficiency (PCE) under laboratory circumstances from 2006 to the present, rising from 3.8% to an astonishing 25%. This scientific breakthrough corresponds to the changing energy situation and rising industrial potential. The flexible perovskite solar cell (FPSC), which capitalizes on the benefits of perovskite thin-film deposition and operates at low temperatures, is key to this transition. The FPSC is strategically important for large-scale deployment and mass manufacturing, especially when combined with the benefits of perovskite thin-film deposition under moderate thermodynamic conditions. Its versatility is demonstrated by the ease with which it may be folded, rolled, or coiled over flexible substrates, allowing for efficient transportation. Notably, FPSCs outperform traditional solar panels in terms of adaptability. FPSCs have several advantages over rigid substrates, including mobility, lightweight properties that help transportation, scalability via roll-to-roll (R2R) deposition, and incorporation into textiles and architecture. This in-depth examination dives into their fundamental design and various fabrication techniques, which include conducting substrates, absorber layers, coordinated charge movement, and conductive electrodes. This review evaluates critical FPSC fabrication techniques such as thermal evaporation, R2R approaches, slot die and spray deposition, blade coating, and spin coating. The present challenges in constructing FPSCs with high performance and long-term stability are also highlighted. Finally, the solar industry's potential uses for both indoor and outdoor FPSCs have been discussed.

Funder

MIMOS

Rabdan academy

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3