Feasibility study on conversion of biowaste of lemon peel into carbon electrode for supercapacitor using ZnCl2 as an activating agent

Author:

Michael M. S.ORCID,Surya K.

Abstract

AbstractHere, we describe the analysis of the capacitive performance of activated carbon materials derived from the biowaste of lemon. Lemon peel discarded by restaurants after juice extraction is carbonized at 400 0C followed by chemical activation using ZnCl2. The porosity of carbon materials is tailored by varying activation conditions, such as the mass ratio of carbonized lemon peel and ZnCl2, duration of heating, and temperature. The Brunauer–Emmett– Teller (BET) surface area and pore volume of carbon materials prepared at different activating conditions range from 1380 to 2120 m2g−1 and 0.38 to 0.69 cm3 g−1 respectively. The derived carbon materials are amorphous indicated by the broad peaks in the XRD pattern as well as disordered structure of the carbon materials is revealed by the Raman spectroscopic analysis. The systematic analysis of capacitive performance of activated carbons by employing electrochemical techniques like Cyclic Voltammetry (CV), Galvanostatic charge/Discharge (GCD) cycles, and electrochemical impedance spectroscopy (EIS) in acidic (H2SO4) and alkaline (KOH) media indicates that optimum condition for activation of lemon peel is 600 °C for 60 min with 1:1 mass ratio of carbonized lemon peel and ZnCl2. The superior performance of (ALP-600) is attributed to its high surface area and well-connected hierarchical porous structure. The tiny hump at ~ 0.2 V in CV might be due to the pseudocapacitive nature of oxygen functional groups indicated by FTIR. ALP-600 exhibits the highest specific capacitance of 180 Fg−1 and retains 99.7% of its initial capacitance after 5000 cycles in the acidic electrolyte. The maximum capacitance achieved with ALP-600 symmetric cell in CR2032 coin cell configuration is 0.90F.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3