Investigation of dehydrogenation performance and air stability of MgH2–PMMA nanostructured composite prepared by direct high-energy ball-milling

Author:

Rafatnejad Mahsa,Raygan ShahramORCID,Sefidmooy Azar Mohammad

Abstract

AbstractMechanical milling and a gas-selective polymer were used to protect MgH2 from oxidation and improve its dehydrogenation properties. MgH2 and poly(methyl methacrylate) (PMMA) were simultaneously ball-milled for 5 and 20 h, respectively, to prepare an air-resistant nanostructured composite. The properties of the nanostructured composite were studied by XRD, SEM, and FTIR methods. The dehydrogenation performance of all samples was investigated by TGA analysis. The hydrogen desorption performance of ball-milled samples was also evaluated after exposure to air for 4 weeks. Results showed that MgH2 desorbed about 0.79 wt.% of hydrogen after heating up to 300 ˚C and holding for 15 min at this temperature. The ball-milling of MgH2 and PMMA for 5 and 20 h led to hydrogen desorption of 6.21 and 6.10 wt.% after heating up to 300 ˚C and holding for 15 min at this temperature, respectively, which proved the surface protection of MgH2 from oxidation by PMMA. After 4 weeks of exposing the ball-milled MgH2–PMMA samples to air, their hydrogen desorption percentage at the same condition changed to 5.80 and 5.72 wt.% for 5 and 20 h milled samples, respectively. A slight reduction in the dehydrogenation percentage of air-exposed samples proved that the air stability of MgH2 had been significantly enhanced by its confinement with PMMA.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Fuel Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3