Analysis and optimization of lead-free perovskite solar cells: investigating performance and electrical characteristics

Author:

Mortadi A.ORCID,El Hafidi E.,Nasrellah H.,Monkade M.,El Moznine R.

Abstract

AbstractSeveral studies on solar cells using SCAPS-1D were conducted to investigate their performance, which are typically limited to I–V analysis for DC characterization. Therefore, in the present study, a very wide frequency range from 10–2 Hz to 1012 Hz was employed to explore diffusion processes and investigate the performance of lead-free Perovskite Solar Cells (PSCs) featuring as a novel heterostructure. These investigations concern the optimization of MASnI3 thickness as an absorber. Additionally, the impact of series (Rs) and shunt (Rsh) resistances is also examined. From the I–V analysis, it was determined that the power efficiency (PCE) could be achieved at a thickness of 0.6 µm. Increasing the series resistance (Rs) led to a significant decrease in the fill factor (FF) and (PCE), whereas the shunt resistance (Rsh) demonstrated a notable improvement in both (FF) and (PCE). Analysis of AC characteristics revealed complex impedance (Z*) and modulus (M*) indicative of main ionic transport, recombination, and diffusion processes crucial for optimization. An appropriate equivalent circuit model was developed and validated through deconvolution and theoretical considerations, yielding parameters such as the time constant for each process. It was observed that ionic conductivity and electronic diffusion play key roles in balancing charge collection and recombination losses. The critical influence of series and shunt resistance on low and high-frequency processes was emphasized, underscoring their significance in solar cell efficiency. A strong correlation was established between the evolution of time constants for each process and power conversion efficiency (PCE).

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3