Music emotion recognition based on segment-level two-stage learning

Author:

He NaORCID,Ferguson Sam

Abstract

AbstractIn most Music Emotion Recognition (MER) tasks, researchers tend to use supervised learning models based on music features and corresponding annotation. However, few researchers have considered applying unsupervised learning approaches to labeled data except for feature representation. In this paper, we propose a segment-based two-stage model combining unsupervised learning and supervised learning. In the first stage, we split each music excerpt into contiguous segments and then utilize an autoencoder to generate segment-level feature representation. In the second stage, we feed these time-series music segments to a bidirectional long short-term memory deep learning model to achieve the final music emotion classification. Compared with the whole music excerpts, segments as model inputs could be the proper granularity for model training and augment the scale of training samples to reduce the risk of overfitting during deep learning. Apart from that, we also apply frequency and time masking to segment-level inputs in the unsupervised learning part to enhance training performance. We evaluate our model on two datasets. The results show that our model outperforms state-of-the-art models, some of which even use multimodal architectures. And the performance comparison also evidences the effectiveness of audio segmentation and the autoencoder with masking in an unsupervised way.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Media Technology,Information Systems

Reference48 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3