Long-term biochar application influences phosphorus and associated iron and sulfur transformations in the rhizosphere

Author:

Yuan Jiahui,Chen Hao,Chen Guanglei,Pokharel Prem,Chang Scott X.,Wang Yujun,Wang Dengjun,Yan Xiaoyuan,Wang Shenqiang,Wang Yu

Abstract

AbstractThe effects of long-term biochar application on soil phosphorus (P) flux across the root-soil interface and its availability in the rhizosphere of rice (Oryza sativa L) remain unclear. We used diffusive gradients in thin films (DGT), laser ablation-inductively coupled plasma mass spectrometry, and planar optode sensor techniques to characterize, in-situ, the 2D heterogeneity and dynamics of rhizosphere soil P, iron (Fe), sulfur (S) and trace element fluxes, dissolved oxygen and pH in paddy soil, after 10 years of biochar application. Compared to the control (no biochar applied), biochar applied at 4.5, 22.5 and 45.0 Mg ha−1 yr−1 decreased rhizospheric P fluxes by 11.6%, 63.4% and 79.0%, respectively. This decrease under biochar treatments was attributed to changed redox status of Fe and S caused by the lower dissolved oxygen in rhizosphere soil and increased soil pH induced precipitating of soluble inorganic P into insoluble P forms, such as calcium-bound and residual P that are unavailable for crop uptake. Higher application rate of biochar resulted in lower As and Pb fluxes in rice rhizosphere and their availabilities for crop uptake. The in-situ observation results in rice rhizosphere at μm-scale after 10 years of biochar addition directly showed the complex effects of long-term biochar and rhizosphere heterogeneity on P transformation process. Graphical Abstract

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration Promotion Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3