Liquid phase oxidation enables stable soft carbon anodes for potassium-ion batteries

Author:

Yao Junjun,Liu Chang,Zhu Yaming,Sun Ying,Feng Daming,Yao Yali,Mao Quanxing,Ma Tianyi

Abstract

AbstractSoft carbon has been recognized as a promising anode material for potassium-ion batteries (PIBs), due to low cost, high conductivity and low voltage platform. However, their practical application is hampered by slow storage kinetics and unsatisfactory cycle life. In this work, pitch-derived needle coke, a typical soft carbon, was incorporated with oxygenated functional groups through liquid phase oxidation by using H2O2 oxidant. When used as anode materials for PIBs, the oxidized needle coke delivers a high reversible capacity of 322.7 mAh g−1, significantly superior to that of the needle coke (237.9 mAh g−1). The enhanced electrochemical performance can be attributed to the abundant oxygenated functional groups and resultant defects on the surface of oxidized needle coke, which not only serve as extra active sites for potassium storage, but also provide sufficient pathways for K+ migration across the adjacent carbon layers. Moreover, the expanded interlayer spacing derived from H2O2 oxidation facilitates rapid K+ intercalation and deintercalation. This work offers an effective modification strategy for the fabrication of high-performance pitch-based soft carbon anodes for PIBs. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Liaoning Revitalization Talents Program

Shenyang Science and Technology Project

Young Scientific and Technological Talents Project of the Department of Education of Liaoning Province

Key Research Project of Department of Education of Liaoning Province

Australian Research Council (ARC) through Future Fellowship

Australian Research Council (ARC) through Discovery Project

Australian Research Council (ARC) through Linkage Project

Australian Government through the Cooperative Research Centres Projects

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3