Engineering of edge nitrogen dopant in carbon nanosheet framework for fast and stable potassium-ion storage

Author:

Wang Caiwei,Yang Dongjie,Zhang Wenli,Qin Yanlin,Qiu Xueqing,Li Zhili

Abstract

AbstractAmorphous carbons are promising candidates as the anode materials for potassium-ion hybrid capacitors (PIHCs). The insufficient storage sites and inferior diffusion kinetics limit their potassium-ion storage capability. Edge nitrogen and morphology engineering are effective pathways to construct accessible active sites and enhanced diffusion kinetics. However, the organic integration of both pathways in amorphous carbon is still challenging. Herein, a “twice-cooking” strategy, including two-step carbonization processes at 700 °C, is designed to synthesize edge-nitrogen-rich lignin-derived carbon nanosheet framework (EN-LCNF). In the first-step carbonization process, the staged gas releases of CO and CO2 from CaC2O4 decomposition exfoliate the carbon matrix into a carbon nanosheet framework. In the second-step carbonization process, the generated CaO reacts with the cyanamide units of graphitic carbon nitride (g-C3N4) to form an edge-nitrogen-rich framework, which is then integrated into the meso-/macropores of carbon nanosheet framework through sp3-hybridized C–N bonds. EN-LCNF with a high edge-nitrogen level of 7.0 at.% delivers an excellent capacity of 310.3 mAh g−1 at 50 mA g−1, a robust rate capability of 126.4 mAh g−1 at 5000 mA g−1, and long cycle life. The as-assembled PIHCs based on EN-LCNF anode and commercial activated carbon cathode show a high energy density of 110.8 Wh kg−1 at a power density of 100 W kg−1 and excellent capacitance retention of 98.7% after 6000 cycles. This work provides a general strategy for the synthesis of edge-nitrogen-rich lignin-derived carbon materials for advanced potassium-ion storage. Graphical Abstract

Funder

National Natural Science Foundation of China

Key Research and Development Program of Guangdong Province

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3