Biochar rate-dependent regulation of extended nitrogen supply by modifying stable aggregates-N and microbial responses

Author:

Ibrahim Muhammed MustaphaORCID,Chang Zhaofeng,Li Zhimin,Joseph Jerry,Yusuf Ado Adamu,Luo Xianzhen,Hou Enqing

Abstract

AbstractBesides carbon sequestration, biochar amendment in soils can regulate the loss of applied fertilizer-nitrogen (N) into the environment. Soil aggregates are essential in controlling soil N stocks' stabilization and supply. However, unraveling the rate-dependent impact of biochar on stable soil aggregates and their associated N in fertilized soils over an extended period is a prerequisite to understanding its implications on soil-N dynamics. We unraveled how high and low biochar application rates combined with inorganic fertilizer (20- and 40-tons ha−1 [FB1 and FB2]) affected soil N fractions, stable soil aggregates, aggregates associated-N, and microbial responses to regulate N supply for Nageia nagi after one year. Results revealed that biochar amendment, especially at higher rate, increased the concentration of inorganic N and some amino acids compared to sole fertilizer (F). Available N increased by 16.5% (p = 0.057), 23.8% (p = 0.033), and 34.8% (p = 0.028) in F, FB1, and FB2, respectively, compared to the control (C). Also, 28.1% and 32.8% significant increases in the availability of NH4+-N were recorded in FB1 and FB2, respectively, compared to F. NO3-N availability was significantly increased by 15.2%, 21.8%, and 20.8% in FB1, FB2, and C, compared to F. Biochar amendment, irrespective of rate, increased stable microaggregates (< 0.25 mm). However, FB2 significantly increased macro- and intermediate-aggregate-N, and urease activity, and hence higher N supply capacity to meet the N need of N. nagi even after one year. Hence, the N content of N. nagi was 41.3%, 28.8%, and 12.2% higher in FB2, FB1, and F, respectively, compared to the control. Biochar amendment decreased bacterial species diversity but increased the proportion of NH4+-oxidizers (especially the Betaproteobacteria) to maintain the mineralization and slow release of N. Although a low biochar rate was more beneficial than sole fertilization, higher biochar application rate could sustain higher N supply by stabilizing soil microaggregates and increasing macro- and intermediate-aggregates N, its mineralization, and slow-release over longer periods.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3