Unraveling the mechanism of assimilatory nitrate reduction and methane oxidation by Methylobacter sp. YHQ through dual N-O isotope analysis and kinetic modeling

Author:

Chen Guojun,Hao Qinqin,Zeng Raymond Jianxiong,Kappler Andreas,Li Xiaomin,Yue Fujun,Hu Shiwen,Yang Yang,Liu Fanghua,Li Han,Qian Dayi,Yang Baoguo,Sarkytkan Kaster,Liu TongxuORCID,Li Fangbai

Abstract

AbstractAssimilatory nitrate reduction and methane (CH4) oxidation by bacteria play important roles in carbon (C) and nitrogen (N) biogeochemical cycles. Here, an investigation of enzymatic assimilatory nitrate reduction and CH4 oxidation by Methylobacter sp. YHQ from the wetlands is presented, specifically concentrating on N and oxygen (O) isotope fractionation with various initial nitrate and oxygen concentrations. The N enrichment factors (15εassimilation) increased from 4.2 ± 0.7‰ to 6.9 ±1.3‰ and the O isotope enrichment factors (18εassimilation) increased from 2.7 ± 0.9‰ to 4.7 ± 0.8‰ during nitrate assimilation when initial nitrate concentrations increased from 0.9 mM to 2 mM. Similar 18ε and 15ε values were observed at different oxygen concentrations. The values of 18ε and 15ε provided vital parameters for the assessment of assimilatory nitrate reduction via the Rayleigh equation approach. The ratios of O and N isotope enrichment factors (18ε:15ε)assimilation ranged from 0.64 ± 0.15 to 0.74 ± 0.18 during nitrate assimilation by Methylobacter sp. YHQ with Nas, which were different from (18ε:15ε)assimilation for assimilatory eukaryotic nitrate reductase (eukNR) from literature data. Thus, N and O isotope fractionation could be useful tools to distinguish eukNR from Nas during nitrate assimilation. Additionally, the rates of CH4 oxidation and nitrate reduction were evaluated with a reaction-based kinetic model, and it quantitatively described the enzymatic reactions of nitrate assimilation. Combining dual N-O isotope analysis with kinetic modeling provides new insights into the microbially driven C-N interactions. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3