Species evenness affects algae driven co-metabolism with aquatic plant residues

Author:

Deng Yang,Wu Yiting,Liu Gan,Xu Xiaoguang,Ma Jie,Yan Yan,Wang Guoxiang

Abstract

AbstractUnderstanding the mixed decomposition processes of aquatic plant residues is crucial for evaluating the carbon cycle of lakes. However, the complex effect of species evenness, and especially the algae driving co-metabolism effect in eutrophic lakes are still far from clear. In this study, three dominant aquatic plants (Phragmites australis, Nymphoides peltatum, and Potamogeton malaianus) and algae from the typical eutrophic and shallow Lake Taihu, China, were selected to simulate their mixed decomposition process. The addition of algae accelerated the mass loss of cellulose, hemicellulose, and lignin of aquatic plant residues and increased the total mass loss by 2.29~6.32% in mixed decomposition. The positive co-metabolism effect, with the intensity ranging from 10% to 17%, occurred during the mixed decomposition process. In addition, the positive co-metabolism effect was also found among plant residues during mixed decomposition and the co-metabolism intensity of species evenness mixed decomposition was more than twice as high as that of non-evenness mixed decomposition. The addition of algae during the decomposition of aquatic plant residues altered the stoichiometry of available nutrients and affected the microbial decomposition activity. The abundance of decomposition bacteria, especially Bacteroidetes, was increased and the community structure also changed, as evidenced by a 71% increase in the number of bacteria phylum. As a result, these biogeochemistry processes accelerated the decomposition rates of aquatic plant residues and thus produced the positive co-metabolism effect. Therefore, the co-metabolism effects of mixed decomposition described in this study are prevalent in eutrophication lakes and have important effects on the lake carbon cycle, which need to be considered in future lake management. Graphical Abstract

Funder

National Natural Science Foundation of China

Research and Innovation Program for Graduate Students of Jiangsu Province

National Key Research and Development Program of China

Guangxi Key Research and Development Program of China

Cooperation and Guidance Project of Prospering Inner Mongolia through Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3