Biodiesel and its potential to mitigate transport-related CO2 emissions

Author:

Solaymani SaeedORCID

Abstract

AbstractMany studies have concentrated on the energy capacity of biodiesel to reduce CO2 emissions at the aggregate level and not much at the sectoral level. This study addresses this gap and attempts to estimate the impact of the use of palm biodiesel on the transport CO2 emissions in Malaysia during 1990–2019. It also predicts the impact of implementing the B10 blending program (10% biodiesel in diesel fuel) on CO2 emissions from transport in this country. For this purpose, this study uses the dynamic autoregressive distributed lag (ARDL) and Kernel-based regularized least squares. This model can plot and estimate the possible actual changes in biodiesel consumption to predict its impacts on transport CO2 emissions. The results suggest that a one-way Granger causality exists from transport GDP, diesel consumption, and motor petrol consumption to palm biodiesel consumption. An increase of 1% in the use of biodiesel reduces carbon emissions from road transport by 0.004% in the long run, while, in the short run, it is associated with a 0.001% increase in transport CO2 emissions. The simulated results from the dynamic ARDL model suggest that a 10% increase in the share of biodiesel consumption in fuel transport by 2030 would reduce the rate of the increase in road transport carbon emissions. The improvement and management of new technologies in oil palm plantation and harvesting can help increase palm oil production for biofuels and edible oil and to reduce forest replacement and therefore biodiversity and food security.

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3