Redox-induced transformation of potentially toxic elements with organic carbon in soil

Author:

Xu Zibo,Tsang Daniel C.W.ORCID

Abstract

AbstractSoil organic carbon (SOC) is a crucial component that significantly affects the soil fertility, soil remediation, and carbon sequestration. Here, we review the redox-induced transformation of potentially toxic elements (PTEs) through the abiotic impact of SOC. The complex composition of SOC includes humus, pyrogenic carbon (e.g., biochar), dissolved organic matter, and anthropogenic carbon (e.g., compost), with varying concentrations and properties. The primary redox moieties on organic carbon are surface functionalities (e.g., phenol, quinone, and N/S-containing functional groups), environmentally persistent free radicals, and graphitic structures, and their contents are highly variable. Owing to these rich redox moieties, organic carbon can directly affect the reduction and oxidation of PTEs in the soil, such as Cr(VI) reduction and As(III) oxidation. In addition, the interactions between organic carbon and soil redox moieties (i.e., O2, Fe, and Mn minerals) cause the transformation of PTEs. The formation of reactive oxygen species, Fe(II), and Mn(III)/Mn(II) is the main contributor to the redox-induced transformation of PTEs, including Cr(VI) reduction and As(III)/Cr(III)/Tl(I) oxidation. We articulated both the positive and negative effects of organic carbon on the redox-induced transformation of PTEs, which could guide soil remediation efforts. Further scientific studies are necessary to better understand the potential transformations of PTEs by SOC, considering the complicated soil moieties, variable organic carbon composition, and both biotic and abiotic transformations of PTEs in the environment. Graphical Abstract

Funder

Hong Kong Environmental and Conservation Fund

Hong Kong Research Grants Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3