Carbon in Chinese grasslands: meta-analysis and theory of grazing effects

Author:

Deng Lei,Shangguan Zhouping,Bell Stephen Mackenzie,Soromotin Andrey V.,Peng Changhui,An Shaoshan,Wu Xing,Xu Xingliang,Wang Kaibo,Li Jianping,Tang Zhuangsheng,Yan Weiming,Zhang Fengbao,Li Jiwei,Wu Jianzhao,Kuzyakov Yakov

Abstract

AbstractGlobally, livestock grazing is an important management factor influencing soil degradation, soil health and carbon (C) stocks of grassland ecosystems. However, the effects of grassland types, grazing intensity and grazing duration on C stocks are unclear across large geographic scales. To provide a more comprehensive assessment of how grazing drives ecosystem C stocks in grasslands, we compiled and analyzed data from 306 studies featuring four grassland types across China: desert steppes, typical steppes, meadow steppes and alpine steppes. Light grazing was the best management practice for desert steppes (< 2 sheep ha−1) and typical steppes (3 to 4 sheep ha−1), whereas medium grazing pressure was optimal for meadow steppes (5 to 6 sheep ha−1) and alpine steppes (7 to 8 sheep ha−1) leading to the highest ecosystem C stocks under grazing. Plant biomass (desert steppes) and soil C stocks (meadow steppes) increased under light or medium grazing, confirming the ‘intermediate disturbance hypothesis’. Heavy grazing decreased all C stocks regardless of grassland ecosystem types, approximately 1.4 Mg ha−1 per year for the whole ecosystem. The regrowth and regeneration of grasslands in response to grazing intensity (i.e., grazing optimization) depended on grassland types and grazing duration. In conclusion, grassland grazing is a double-edged sword. On the one hand, proper management (light or medium grazing) can maintain and even increase C stocks above- and belowground, and increase the harvested livestock products from grasslands. On the other hand, human-induced overgrazing can lead to rapid degradation of vegetation and soils, resulting in significant carbon loss and requiring long-term recovery. Grazing regimes (i.e., intensity and duration applied) must consider specific grassland characteristics to ensure stable productivity rates and optimal impacts on ecosystem C stocks. Graphical Abstract

Funder

the National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3