Ball milled Mg/Al hydroxides modified nitrogen-rich biochar for arsenic removal: performance and governing mechanism

Author:

Wang Ming,Yan Jinlong,Diao Yusen,Zhou Xiangqian,Luo Ting,Wang Hui,Quan GuixiangORCID,Sun Xinyu,Wang Jun

Abstract

AbstractLayered double hydroxides (LDHs) are widely used as effective adsorbents for wastewater treatment due to their simple synthesis, controllable structure, strong stability, large surface area, and large interfacial spacing. In this study, modified-biochar (BMBC) and Mg/Al modified-biochar composite (Mg/Al-BC) were directly prepared using ball milling technology to effectively adsorb As(V), and nitrogen-rich biochar was obtained through pyrolysis using shrimp shells as precursors. Compared to pristine biochar, the oxygen-containing functional groups of Mg/Al-BC increased by 71.9%, and the particle average diameter decreased from 14.26 nm to 12.56 nm. The kinetics and isothermal models of arsenic adsorption were examined in batch experiments to investigate the impacts of pH, temperature, and co-existing anions. The adsorption capacities for As(V) followed the order: Mg/Al-BC > BMBC > BC, with their respective maximum adsorption capacities measured at 22.65, 6.73, and 0.48 mg/g. The arsenic adsorbed onto Mg/Al-BC was dependent on pH and coexisting anions. Precipitation, ion exchange, surface complexation, and electrostatic interaction were the possible governing adsorption mechanisms. Protonation of pyridinic-N/quinone groups in biochar contributed to the electrostatic attraction between arsenic anion and quaternary ammonium cation. Stable reusability indicates that the ball milled Mg/Al-BC composite could be a promising adsorbent for arsenate removal from polluted water. Graphical Abstract

Funder

Natural Science Foundation of Jiangsu Province

Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Yancheng Institute of Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3