Mixed reality training application to perform obstetric pulsed-wave Doppler ultrasound

Author:

Nylund Maria Emine,Jain ShubhamORCID,Tegnander Eva,Jensen Eva Johanne Leknes,Prasolova-Førland Ekaterina,Linsdeth Frank,Kiss Gabriel

Abstract

AbstractPulsed-wave Doppler ultrasound is a widely used technique for monitoring pregnancies. As ultrasound equipment becomes more advanced, it becomes harder to train practitioners to be proficient in the procedure as it requires the presence of an expert, access to high-tech equipment as well as several volunteering patients. Immersive environments such as mixed reality can help trainees in this regard due to their capabilities to simulate real environments and objects. In this article, we propose a mixed reality application to facilitate training in performing pulsed-wave Doppler ultrasound when acquiring a spectrogram to measure blood velocity in the umbilical cord. The application simulates Doppler spectrograms while the trainee has the possibility of adjusting parameters such as pulse repetition frequency, sampling depth, and beam-to-flow angle. This is done using a combination of an optimized user interface, 3D-printed objects tracked using image recognition and data acquisition from a gyroscope. The application was developed for Microsoft HoloLens as the archetype of mixed reality, while a 3D-printed abdomen was used to simulate a patient. The application aims to aid in both simulated and real-life ultrasound procedures. Expert feedback and user-testing results were collected to validate the purpose and use of the designed application. Design science research was followed to propose the intended application while contributing to the literature on leveraging immersive environments for medical training and practice. Based on the results of the study, it was concluded that mixed reality can be efficiently used in ultrasound training.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3