Statistical and clustering validation analysis of primary students' learning outcomes and self-awareness of information and technical online security problems at a post-pandemic time

Author:

Panskyi TarasORCID,Korzeniewska Ewa

Abstract

AbstractThe authors decided to investigate the impact of the pandemic period and the resulting limitations in Polish primary school online security education. The first part of the study investigates the impact of the COVID-19 pandemic on students’ educational learning outcomes in information and Internet security. The study has been performed via a student-oriented survey of 20 questions. The statistical analysis confirms the significant difference before and after the pandemic in several questions at most. Nevertheless, this justifies the statement that pandemics had a positive impact on post-pandemic Internet-related security education. The second part of the study has been focused on students' perception and self-awareness of cyberspace problems. For this purpose, the authors used novel majority-based decision fusion clustering validation methods. The revealed results illustrate the positive tendency toward the students' self-awareness and self-confidence of online security problems and e-threats before, during and after the challenging pandemic period. Moreover, the presented validation methods show the appealing performance in educational data analysis, and therefore, the authors recommended these methods as a preprocessing step that helps to explore the intrinsic data structures or students' behaviors and as a postprocessing step to predict learning outcomes in different educational environments.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Education

Reference95 articles.

1. Aggarwal, C. C. (2018). Neural networks and deep learning (1st ed.). Springer.

2. Amielańczyk, M., Michniuk, A., & Śliwowski, K. (2020). Nauczanie zdalne w Polsce. Skriware sp. z o.o.

3. Andrzejewska, A. (2014). Nowe kompetencje nauczycieli w zakresie możliwości i niebezpieczeństw cyberprzestrzeni. In J. Bednarek & A. Andrzejewska (Eds.), Zagrożenia cyberprzestrzeni i świata wirtualnego. Wydawnictwo Difin.

4. Bai, J., & Ng, S. (2005). Tests for skewness, kurtosis, and normality for time series data. Journal of Business & Economic Statistics, 23(1), 49–60. https://doi.org/10.1198/073500104000000271

5. Bąk, A. (2015). Korzystanie z urządzeń mobilnych przez małe dzieci. Wyniki badania ilościowego. Fundacja Dzieci Niczyje.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3