A neuro-fuzzy model for predicting and analyzing student graduation performance in computing programs

Author:

Mehdi RiyadhORCID,Nachouki MirnaORCID

Abstract

AbstractPredicting student’s successful completion of academic programs and the features that influence their performance can have a significant effect on improving students’ completion, and graduation rates and reduce attrition rates. Therefore, identifying students are at risk, and the courses where improvements in content, delivery mode, pedagogy, and assessment activities can improve students’ learning experience and completion rates. In this work, we have developed a prediction and explanatory model using adaptive neuro-fuzzy inference system (ANFIS) methodology to predict the grade point average (GPA), at graduation time, of students enrolled in the information technology program at Ajman University. The approach adopted uses students’ grades in introductory and fundamental IT courses and high school grade point average (HSGPA) as predictors. Sensitivity analysis was performed on the model to quantify the relative significance of each predictor in explaining variations in graduation GPA. Our findings indicate HSGPA is the most influential factor in predicting graduation GPA, with data structures, operating systems, and software engineering coming closely in second place. On the explanatory side, we have found that discrete mathematics was the most influential course causing variations in graduation GPA, followed by software engineering, information security, and HSGPA. When we ran the model on the testing data, 77% of the predicted values fell within one root mean square error (0.29) of the actual GPA, which has a maximum of four. We have also shown that the ANFIS approach has better predictive accuracy than commonly used techniques such as multilinear regression. We recommend that IT programs at other institutions conduct comparable studies and shed some light on our findings.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Education

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3