Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Akalin, N., & Loutfi, A. (2021). Reinforcement Learning Approaches in Social Robotics. Sensors, 21(4), 1292. https://doi.org/10.3390/s21041292
2. Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2017). Instruction based on adaptive learning technologies. In R. E. Mayer & P. Alexander (eds.) Handbook of research on learning and instruction, New York. https://doi.org/10.4324/9781315736419
3. Ausin, M. S. (2019). Leveraging deep reinforcement learning for pedagogical policy induction in an intelligent tutoring system. In Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019), Montreal, Canada. https://par.nsf.gov/biblio/10136494. Accessed April 2023.
4. Azoulay, R., David, E., Hutzler, D. & Avigal, M. (2014). Adaptation schemes for question's level to be proposed by intelligent tutoring systems. In International Conference on Agents and Artificial Intelligence, Angers, France.https://doi.org/10.5220/0004732402450255
5. Bignold, A., Cruz, F., Dazeley, R., Vamplew, P., & Foale, C. (2021). An Evaluation methodology for interactive reinforcement learning with simulated users. Biomimetics, 6(1), 13. https://doi.org/10.3390/biomimetics6010013