1. Alshanqiti, A., Tanweer, A., Mohamed, B., Abdallah, N., & Ahmad, T. (2020). A rule-based Approach toward automating the assessments of academic curriculum mapping. International Journal of Advanced Computer Science and Applications (IJACSA), 11(12). https://doi.org/10.14569/IJACSA.2020.0111285
2. Classification: Precision and Recall. (n.d.). Retrieved July 23, 2022, from https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
3. Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv. https://doi.org/10.48550/arXiv.1810.04805
4. Honnibal, M., Montani, I., Van Landeghem, S., & Boyd, A. (2020). SpaCy: Industrial-Strength Natural Language Processing in Python. Zenodo. Retrieved from https://spacy.io/. Accessed 10 July 2022
5. Ibrahim, W. A., Atif, Y., Shuaib, K., & Sampson, D. (2015). A web-based course assessment tool with direct mapping to student outcomes. Educational Technology & Society, 18(2), 46–59.