Detecting non-verbal speech and gaze behaviours with multimodal data and computer vision to interpret effective collaborative learning interactions

Author:

Zhou QiORCID,Suraworachet Wannapon,Cukurova Mutlu

Abstract

AbstractCollaboration is argued to be an important skill, not only in schools and higher education contexts but also in the workspace and other aspects of life. However, simply asking students to work together as a group on a task does not guarantee success in collaboration. Effective collaborative learning requires meaningful interactions among individuals in a group. Recent advances in multimodal data collection tools and AI provide unique opportunities to analyze, model and support these interactions. This study proposes an original method to identify group interactions in real-world collaborative learning activities and investigates the variations in interactions of groups with different collaborative learning outcomes. The study was conducted in a 10-week long post-graduate course involving 34 students with data collected from groups’ weekly collaborative learning interactions lasting ~ 60 min per session. The results showed that groups with different levels of shared understanding exhibit significant differences in time spent and maximum duration of referring and following behaviours. Further analysis using process mining techniques revealed that groups with different outcomes exhibit different patterns of group interactions. A loop between students’ referring and following behaviours and resource management behaviours was identified in groups with better collaborative learning outcomes. The study indicates that the nonverbal behaviours studied here, which can be auto-detected with advanced computer vision techniques and multimodal data, have the potential to distinguish groups with different collaborative learning outcomes. Insights generated can also support the practice of collaborative learning for learners and educators. Further research should explore the cross-context validity of the proposed distinctions and explore the approach’s potential to be developed as a real-world, real-time support system for collaborative learning.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3