Gaining traction: on the convergence of an inner approximation scheme for probability maximization

Author:

Fábián Csaba I.ORCID

Abstract

AbstractWe analyze an inner approximation scheme for probability maximization. The approach was proposed in Fábián et al. (Acta Polytech Hung 15:105–125, 2018), as an analogue of a classic dual approach in the handling of probabilistic constraints. Even a basic implementation of the maximization scheme proved usable and endured noise in gradient computations without any special effort. Moreover, the speed of convergence was not affected by approximate computation of test points. This robustness was then explained in an idealized setting. Here we work out convergence proofs and efficiency arguments for a nondegenerate normal distribution. The main message of the present paper is that the procedure gains traction as an optimal solution is approached.

Funder

Hungarian Government co-financed by European Social Fund

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research

Reference22 articles.

1. Borgwardt KH (2009) Probabilistic analysis of simplex algorithms. In: Floudas CA, Paradlos PM (eds) Encyclopedia of optimization. Springer

2. Cutler L, Wolfe P (1963) Experiments in linear programming. In: Graves R, Wolfe P (eds) Recent advances in mathematical programming. McGraw-Hill, first published as a technical report of the RAND Corporation

3. de Oliveira W, Sagastizábal C (2014) Level bundle methods for oracles with on-demand accuracy. Optim Methods Softw 29:1180–1209

4. Dempster MAH, Merkovsky RR (1995) A practical geometrically convergent cutting plane algorithm. SIAM J Numer Anal 32:631–644

5. Dentcheva D, Martinez G (2013) Regularization methods for optimization problems with probabilistic constraints. Math Program 138:223–251

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operations research in Hungary: VOCAL 2018;Central European Journal of Operations Research;2021-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3