A note on computational approaches for the antibandwidth problem

Author:

Sinnl MarkusORCID

Abstract

AbstractIn this note, we consider the antibandwidth problem, also known as dual bandwidth problem, separation problem and maximum differential coloring problem. Given a labeled graph (i.e., a numbering of the vertices of a graph), the antibandwidth of a node is defined as the minimum absolute difference of its labeling to the labeling of all its adjacent vertices. The goal in the antibandwidth problem is to find a labeling maximizing the antibandwidth. The problem is NP-hard in general graphs and has applications in diverse areas like scheduling, radio frequency assignment, obnoxious facility location and map-coloring. There has been much work on deriving theoretical bounds for the problem and also in the design of metaheuristics in recent years. However, the optimality gaps between the best known solution values and reported upper bounds for the HarwellBoeing Matrix-instances, which are the commonly used benchmark instances for this problem, are often very large (e.g., up to 577%). Moreover, only for three of these 24 instances, the optimal solution is known, leading the authors of a state-of-the-art heuristic to conclude “HarwellBoeing instances are actually a challenge for modern heuristic methods”. The upper bounds reported in literature are based on the theoretical bounds involving simple graph characteristics, i.e., size, order and degree, and a mixed-integer programming (MIP) model. We present new MIP models for the problem, together with valid inequalities, and design a branch-and-cut algorithm and an iterative solution algorithm based on them. These algorithms also include two starting heuristics and a primal heuristic. We also present a constraint programming approach, and calculate upper bounds based on the stability number and chromatic number. Our computational study shows that the developed approaches allow to find the proven optimal solution for eight instances from literature, where the optimal solution was unknown and also provide reduced gaps for eleven additional instances, including improved solution values for seven instances, the largest optimality gap is now 46%.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Population-based iterated greedy algorithm for the S-labeling problem;Computers & Operations Research;2023-07

2. An iterative exact algorithm for the weighted fair sequences problem;Computers & Operations Research;2022-12

3. Search Trajectory Networks Applied to the Cyclic Bandwidth Sum Problem;IEEE Access;2021

4. Duplex Encoding of Staircase At-Most-One Constraints for the Antibandwidth Problem;Integration of Constraint Programming, Artificial Intelligence, and Operations Research;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3