A hybrid estimation of distribution algorithm for the offline 2D variable-sized bin packing problem

Author:

Borgulya IstvanORCID

Abstract

AbstractIn this paper we present an evolutionary heuristic for the offline two-dimensional variable-sized bin packing problem. In this problem we have to pack a set of rectangles into two-dimensional variable-sized rectangular bins. The bins are divided into types, and the bins in different types have different sizes and possibly different weights (costs). There are (sufficiently) many bins from each type, and any rectangle fits into at least one bin-type. The goal is to pack the rectangles into the bins without overlap, parallel to the sides, so that the total area of the used bins (or total cost) is minimized. Our algorithm is a hybrid heuristic. It uses two different techniques to generate the descendants: either estimation of distribution algorithm and sampling the resulting probability model, or applying the usual operators of evolutionary algorithms (selection, mutation). To pack the rectangles into the bins the algorithm uses the strategy of randomly choosing one of two placement heuristics, that pack always only one group (one to three) of rectangles. It improves the quality of the solutions with three local search procedures. The algorithm has been tested on benchmark instances from the literature and has been compared with other heuristics and metaheuristics. Our algorithm outperformed the previously published results.

Funder

University of Pécs

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization methods and algorithms;Central European Journal of Operations Research;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3