On the $$c_0$$-equivalence and permutations of series

Author:

Bartoszewicz Artur,Fechner WłodzimierzORCID,Świątczak Aleksandra,Widz Agnieszka

Abstract

AbstractAssume that a convergent series of real numbers $$\sum \limits _{n=1}^\infty a_n$$ n = 1 a n has the property that there exists a set $$A\subseteq {\mathbb {N}}$$ A N such that the series $$\sum \limits _{n \in A} a_n$$ n A a n is conditionally convergent. We prove that for a given arbitrary sequence $$(b_n)$$ ( b n ) of real numbers there exists a permutation $$\sigma :{\mathbb {N}}\rightarrow {\mathbb {N}}$$ σ : N N such that $$\sigma (n) = n$$ σ ( n ) = n for every $$n \notin A$$ n A and $$(b_n)$$ ( b n ) is $$c_0$$ c 0 -equivalent to a subsequence of the sequence of partial sums of the series $$\sum \limits _{n=1}^\infty a_{\sigma (n)}$$ n = 1 a σ ( n ) . Moreover, we discuss a connection between our main result with the classical Riemann series theorem.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Analysis,Algebra and Number Theory

Reference21 articles.

1. Balcar, B., Simon, P.: Appendix on general topology. In: Handbook of Boolean Algebras, vol. 3, pp. 1239–1267. North-Holland, Amsterdam (1989)

2. Banakiewicz, M., Hanson, B., Pierce, P., Prus-Wiśniowski, F.: A Riemann-type theorem for segmentally alternating series. Bull. Iran. Math. Soc. 44(5), 1303–1314 (2018)

3. Banakiewicz, M., Bartoszewicz, A., Prus-Wiśniowski, F.: The center of distances of some multigeometric series. Preprint at arXiv: 1907.03800v1 [math.CA] (2019)

4. Bartoszewicz, A., Gła̧b, S., Wachowicz, A.: Remarks on ideal boundedness, convergence and variation of sequences. J. Math. Anal. Appl. 375(2), 431–435 (2011)

5. Bartoszewicz, A., Gła̧b, S., Marchwicki, J.: Achievement sets of conditionally convergent series. Colloq. Math. 152(2), 235–254 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3