Abstract
AbstractConsidering the deeper reasons of the appearance of a remarkable counterexample by Kaad and Skeide (J Operat Theory 89(2):343–348, 2023) we consider situations in which two Hilbert C*-modules $$M \subset N$$
M
⊂
N
with $$M^\bot = \{ 0 \}$$
M
⊥
=
{
0
}
over a fixed C*-algebra A of coefficients cannot be separated by a non-trivial bounded A-linear functional $$r_0: N \rightarrow A$$
r
0
:
N
→
A
vanishing on M. In other words, the uniqueness of extensions of the zero functional from M to N is focussed. We show this uniqueness of extension for any such pairs of Hilbert C*-modules over W*-algebras, over monotone complete C*-algebras and over compact C*-algebras. Moreover, uniqueness of extension takes place also for any one-sided maximal modular ideal of any C*-algebra. Such a non-zero separating bounded A-linear functional $$r_0$$
r
0
exist for a given pair of full Hilbert C*-modules $$M \subseteq N$$
M
⊆
N
over a given C*-algebra A iff there exists a bounded A-linear non-adjointable operator $$T_0: N \rightarrow N$$
T
0
:
N
→
N
, such that the kernel of $$T_0$$
T
0
is not biorthogonally closed w.r.t. N and contains M. This is a new perspective on properties of bounded modular operators that might appear in Hilbert C*-module theory. By the way, we find a correct proof of Lemma 2.4 of Frank (Int J Math 13:1–19, 2002) in the case of monotone complete and compact C*-algebras, but find it not valid in certain particular cases.
Funder
Hochschule für Technik, Wirtschaft und Kultur Leipzig (HTWK)
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Ara, P., Mathieu, M.: Local Multiplier C*-Algebras. Springer Monographs in Mathematics. Springer-Verlag London Limited, London (2003)
2. Asadi, M.B., Frank, M., Hassanpour-Yakhdani, Z.: Frameless Hilbert C*-modules. Glasg. Math. J. 61, 25–31 (2018)
3. Bakić, D., Guljaš, B.: Hilbert C*-modules over C*-algebras of compact operators. Acta Sci. Math. (Szeged) 68, 249–269 (2002)
4. Blackadar, B.: Operator Algebras: Theory of C*-Algebras and Von Neumann Algebras. Encyclopaedia of Mathematical Sciences, vol. 122. Springer, Berlin (2006/2011)
5. Blecher, D.P.: On selfdual Hilbert modules. In: Operator Algebras and Their Applications, Fields Institute Communications, vol. 13, Ed. Fillmore, P. A. and Mingo, J. A. pp. 65–80. American Mathematical Society, Providence (1997)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献