Abstract
AbstractLet X, Y be real normed spaces and let $$\rho '_+$$
ρ
+
′
, $$\rho '_-$$
ρ
-
′
be norm derivatives. In this work, we solve a system of functional equations $$\begin{aligned} {\left\{ \begin{array}{ll}\rho '_+(f(x),f(y))=g(x)\rho '_+(x,y),\\ \rho '_-(f(x),f(y))=g(x)\rho '_-(x,y), \end{array}\right. } \end{aligned}$$
ρ
+
′
(
f
(
x
)
,
f
(
y
)
)
=
g
(
x
)
ρ
+
′
(
x
,
y
)
,
ρ
-
′
(
f
(
x
)
,
f
(
y
)
)
=
g
(
x
)
ρ
-
′
(
x
,
y
)
,
with unknown functions $$f:X\!\rightarrow \!Y$$
f
:
X
→
Y
, $$g:X\rightarrow \mathbb {R}$$
g
:
X
→
R
. Moreover, we give partial answer to open problem posed in 2010.
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Analysis,Algebra and Number Theory
Reference14 articles.
1. Alsina, C., Sikorska, J., Tomás, M.S.: Norm Derivatives and Characterizations of Inner Product Spaces. World Scientific, Hackensack, NJ (2010)
2. Alsina, C., Tomás, M.S.: On the functional equations $$\rho ^{\prime }_\pm (T(x), T(x))=\rho ^{\prime }_\pm (x, y)$$. J. Inst. Math. Comput. Sci. Math. Ser. 4, 411–417 (1991)
3. Dragomir, S.S.: Semi-Inner Products and Applications. Nova Science Publishers Inc., Hauppauge, NY (2004)
4. Hardtke, J.-D.: Absolute sums of Banach spaces and some geometric properties related to rotundity and smoothness. Banach J. Math. Anal. 8, 295–334 (2014)
5. Ilišević, D., Turnšek, A.: On Wigner’s theorem in smooth normed spaces. Aequationes Math. 94, 1257–1267 (2020)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献