Modular spectral triples and deformed Fredholm modules

Author:

Ciolli Fabio,Fidaleo FrancescoORCID

Abstract

AbstractIn the setting of non-type $$\mathop {\mathrm{{II_1}}}$$ II 1 representations, we propose a definition of deformed Fredholm module$$\big [D_{{\mathcal {T}}}|D_{{\mathcal {T}}}|^{-1},\,\mathbf{\cdot }\,\big ]_{{\mathcal {T}}}$$ [ D T | D T | - 1 , · ] T for a modular spectral triple $${{\mathcal {T}}}$$ T , where $$D_{{\mathcal {T}}}$$ D T is the deformed Dirac operator. $$D_{{\mathcal {T}}}$$ D T is assumed to be invertible for the sake of simplicity, and its domain is an “essential” operator system $${{\mathcal {E}}}_{{\mathcal {T}}}$$ E T . According to such a definition, we obtain $$\big [D_{{\mathcal {T}}}|D_{{\mathcal {T}}}|^{-1},\,\mathbf{\cdot }\,\big ]_{{\mathcal {T}}}=|D_{{\mathcal {T}}}|^{-1}d_{{\mathcal {T}}}(\,\mathbf{\cdot }\,)+d_{{\mathcal {T}}}(\,\mathbf{\cdot }\,)|D_{{\mathcal {T}}}|^{-1}$$ [ D T | D T | - 1 , · ] T = | D T | - 1 d T ( · ) + d T ( · ) | D T | - 1 , where $$d_{{\mathcal {T}}}$$ d T is the deformed derivation associated to $$D_{{\mathcal {T}}}$$ D T . Since the “quantum differential” $$1/|D_{{\mathcal {T}}}|$$ 1 / | D T | appears in a symmetric position, such a definition of Fredholm module differs from the usual one even in the undeformed case, that is in the tracial case. Therefore, it seems to be more suitable for the investigation of noncommutative manifolds in which the nontrivial modular structure might play a crucial role. We show that all models in Fidaleo and Suriano (J Funct Anal 275:1484–1531, 2018) of non-type $$\mathop {\mathrm{{II_1}}}$$ II 1 representations of noncommutative 2-tori indeed provide modular spectral triples, and in addition deformed Fredholm modules according to the definition proposed in the present paper. Since the detailed knowledge of the spectrum of the Dirac operator plays a fundamental role in spectral geometry, we provide a characterisation of eigenvalues and eigenvectors of the deformed Dirac operator $$D_{{\mathcal {T}}}$$ D T in terms of the periodic solutions of a particular class of eigenvalue Hill equations.

Funder

Università degli Studi di Roma Tor Vergata

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Analysis,Algebra and Number Theory

Reference44 articles.

1. Acerbi, F.: Nonregular representation of CCR algebras, ISAS PhD Thesis, available online at ISAS digital Library (1993)

2. Bellissard, B., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. Topology and physics. J. Math. Phys. 35, 5373–5451 (1994)

3. Boca, F.-P.: Rotation C$$^{*}$$-algebras and Almost Mathieu Operators. Theta, Bucharest (2001)

4. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer, New York (2002)

5. Carey, A.L., Phillips, J., Putnam, I.F., Rennie, A.: Families of type III KMS states on a class of C*-algebras containing $$O_n$$ and $${\mathbb{Q}}_N$$. J. Funct. Anal. 260, 1637–1681 (2011)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convergence of Fourier truncations for compact quantum groups and finitely generated groups;Journal of Geometry and Physics;2023-10

2. Spectral actions for q-particles and their asymptotics;Journal of Physics A: Mathematical and Theoretical;2022-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3