Abstract
AbstractInfluenced by the concept of a p-compact operator due to Sinha and Karn (Stud Math 150(1): 17–33, 2002), we introduce p-compact Bloch maps of the open unit disk $$\mathbb {D}\subseteq \mathbb {C}$$
D
⊆
C
to a complex Banach space X, and obtain its most outstanding properties: surjective Banach ideal property, Möbius invariance, linearisation on the Bloch-free Banach space over $$\mathbb {D}$$
D
, inclusion properties, factorisation of their derivatives, and transposition on the normalized Bloch space. We also present right p-nuclear Bloch maps of $$\mathbb {D}$$
D
to X and study its relation with p-compact Bloch maps.
Funder
Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía
Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
Ministerio de Universidades
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Achour, D., Dahia, E., Turco, P.: Lipschitz $$p$$-compact mappings. Monatsh. Math. 189, 595–609 (2019)
2. Arazy, J., Fisher, S.D., Peetre, J.: Möbius invariant function spaces. J. Reine Angew. Math. 363, 110–145 (1985)
3. Aron, R., Çalişkan, E., García, D., Maestre, M.: Behavior of holomorphic mappings on $$p$$-compact sets in a Banach space. Trans. Am. Math. Soc. 368, 4855–4871 (2016)
4. Aron, R., Maestre, M., Rueda, P.: $$p$$-Compact holomorphic mappings$$p$$-Compact holomorphic mappings. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 104(2), 353–364 (2010)
5. Choi, Y.S., Kim, J.M.: The dual space of $$({\cal{L}}(X, Y),\tau _p)$$ and the $$p$$-approximation property. J. Funct. Anal. 259, 2437–2454 (2010)