iTRAQ-based protein profiling and functional identification of four genes involved in rice basal resistance against Magnaporthe oryzae in two contrasting rice genotypes

Author:

Li Chenchen,Chen Ziqiang,Deng Yun,Jiang Shuyu,Su Yan,Yang Shaohua,Lin Yan,Tian DagangORCID

Abstract

AbstractRice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases. Developing blast-resistant rice cultivars represents the most economical and environmentally friend strategy for managing the disease. In our previous study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the resistance gene Piz-t gene-mediated resistance response to infection in two contrasting rice genotypes of the Piz-t transgenic Nipponbare line (NPB-Piz-t) and its wild-type Nipponbare (NPB). Here, from the comparisons of differentially expressed proteins (DEPs) of NPB-Piz-t to the avirulent isolate KJ201 (KJ201-Piz-t)and the virulent isolate RB22 (RB22-Piz-t) with mock-treated NPB-Piz-t (Mock-Piz-t), NPB to the virulent isolate KJ201(KJ201-NPB) and RB22 (RB22-NPB) with mock-treated NPB (Mock-NPB), 1, 1, and 6 common DEPs were, respectively, identified at 24, 48 and 72 h post-inoculation (hpi) in the susceptible comparisons of RB22-Pizt/Mock-Piz-t, KJ201-NPB/Mock-NPB, and RB22-NPB/Mock-NPB, involving in gi|54,290,836 and gi|59,800,021 were identified in the resistance comparison KJ201-Piz-t/Mock-Piz-t at 48 and 72 hpi respectively. Moreover, four genes of Os01g0138900 (gi|54,290,836), Os04g0659300 (gi|59,800,021), Os09g0315700 (gi|125,563,186) or Os04g0394200 (gi|21,740,743) were knocked out or overexpressed in NPB using gene over-expression and CRISPR/Cas9 technology, and results verified that the Os01g0138900 obviously affected the rice blast resistance. Further, expression and targeted metabolomics analysis illuminated the resistance response of cysteine-containing substances as gi|59,800,021 under blast infection. These results provide new targets for basal resistance gene identification and open avenues for developing novel rice blast resistant materials.

Funder

Youth Program of Fujian Academy of Agricultural Sciences (FAAS) grant

Nurturing National Nature Science Foundation of China (NSFC) Research Project

Key Program of the National Natural Science of Fujian province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3