Robust estimation and inference for general varying coefficient models with missing observations

Author:

Bravo FrancescoORCID

Abstract

AbstractThis paper considers estimation and inference for a class of varying coefficient models in which some of the responses and some of the covariates are missing at random and outliers are present. The paper proposes two general estimators—and a computationally attractive and asymptotically equivalent one-step version of them—that combine inverse probability weighting and robust local linear estimation. The paper also considers inference for the unknown infinite-dimensional parameter and proposes two Wald statistics that are shown to have power under a sequence of local Pitman drifts and are consistent as the drifts diverge. The results of the paper are illustrated with three examples: robust local generalized estimating equations, robust local quasi-likelihood and robust local nonlinear least squares estimation. A simulation study shows that the proposed estimators and test statistics have competitive finite sample properties, whereas two empirical examples illustrate the applicability of the proposed estimation and testing methods.

Funder

University of York

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3