Some results on the Gaussian Markov Random Field construction problem based on the use of invariant subgraphs

Author:

Baz Juan,Díaz Irene,Montes Susana,Pérez-Fernández RaúlORCID

Abstract

AbstractThe study of Gaussian Markov Random Fields has attracted the attention of a large number of scientific areas due to its increasing usage in several fields of application. Here, we consider the construction of Gaussian Markov Random Fields from a graph and a positive-definite matrix, which is closely related to the problem of finding the Maximum Likelihood Estimator of the covariance matrix of the underlying distribution. In particular, it is simultaneously required that the variances and the covariances between variables associated with adjacent nodes in the graph are fixed by the positive-definite matrix and that pairs of variables associated with non-adjacent nodes in the graph are conditionally independent given all other variables. The solution to this construction problem exists and is unique up to the choice of a vector of means. In this paper, some results focusing on a certain type of subgraphs (invariant subgraphs) and a representation of the Gaussian Markov Random Field as a Multivariate Gaussian Markov Random Field are presented. These results ease the computation of the solution to the aforementioned construction problem.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Fonds Wetenschappelijk Onderzoek

Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaussian Markov Random Fields over graphs of paths and high relative accuracy;Journal of Computational and Applied Mathematics;2025-01

2. Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions;Journal of the American Statistical Association;2024-09-09

3. Gaussian Markov Random Fields and totally positive matrices;Journal of Computational and Applied Mathematics;2023-10

4. Light Pollution Index System Model Based on Markov Random Field;Mathematics;2023-07-07

5. Correlation matrices of Gaussian Markov random fields over cycle graphs;Linear Algebra and its Applications;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3