Abstract
AbstractA perennial objection against Bayes factor point-null hypothesis tests is that the point-null hypothesis is known to be false from the outset. We examine the consequences of approximating the sharp point-null hypothesis by a hazy ‘peri-null’ hypothesis instantiated as a narrow prior distribution centered on the point of interest. The peri-null Bayes factor then equals the point-null Bayes factor multiplied by a correction term which is itself a Bayes factor. For moderate sample sizes, the correction term is relatively inconsequential; however, for large sample sizes, the correction term becomes influential and causes the peri-null Bayes factor to be inconsistent and approach a limit that depends on the ratio of prior ordinates evaluated at the maximum likelihood estimate. We characterize the asymptotic behavior of the peri-null Bayes factor and briefly discuss suggestions on how to construct peri-null Bayes factor hypothesis tests that are also consistent.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献