Author:
Jia Qiong,Zhuge Yan,Duan Weiwei,Liu Yue,Yang Jing,Youssf Osama,Lu Jinsuo
Abstract
AbstractAlum sludge is a typical by-product of drinking water treatment processes. Most sludge is disposed of at landfill sites, and such a disposal method may cause significant environmental concern due to its vast amount. This paper assessed the feasibility of reusing sludge as a supplementary cementitious material, which could efficiently exhaust stockpiled sludge. Specifically, the pozzolanic reactivity of sludge at different temperatures, the reaction mechanism of the sludge–cement binder, and the resistance of sludge-derived mortar to microbially induced corrosion were investigated. The obtained results indicated that 800 °C was the optimal calcination temperature for sludge. Mortar containing sludge up to 30% by weight showed comparable physical properties at a curing age of 90 days. Mortar with 10% cement replaced by sludge can significantly improve the resistance to biogenic corrosion due to the formation of Al-bearing phases with high resistance to acidic media, e.g., Ca4Al2O7·xH2O and strätlingite.
Graphical abstract
Funder
University of South Australia
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献