Evaluating Recommender Systems for Supportive Technologies

Author:

Freyne Jill,Berkovsky Shlomo

Publisher

Springer London

Reference35 articles.

1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans knowl Data Eng 17: 734–749

2. Bambini R, Cremonesi P, Turrin R (2011) A recommender system for an iptv service provider: a real large-scale production environment. In: Recommender systems handbook. Springer, Boston, pp 299–331

3. Berkovsky S, Freyne J (2010) Group-based recipe recommendations: analysis of data aggregation strategies. In: Amatriain X, Torrens M, Resnick P, Zanker M (eds) RecSys. ACM, New York, pp 111–118

4. Billsus D, Pazzani M (1998) Learning collaborative information filters. In: Proceedings of the fifteenth international conference on machine learning, vol 54, p 48

5. Bollen D, Knijnenburg B, Willemsen M, Graus M (2010) Understanding choice overload in recommender systems. In: Proceedings of the fourth ACM conference on recommender systems. ACM, New York, pp 63–70

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the Accuracy for Predicting Nutritious Food Recommendations for Patients using Ensemble Random Forest over Artificial Neural Network;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

2. Towards Recommender Systems Integrating Contextual Information from Multiple Domains through Tensor Factorization;Artificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications;2023-08-14

3. ReuseKNN: Neighborhood Reuse for Differentially Private KNN-Based Recommendations;ACM Transactions on Intelligent Systems and Technology;2023-08-11

4. Evaluating Recommender Systems: Survey and Framework;ACM Computing Surveys;2022-12-23

5. A rule-based automated machine learning approach in the evaluation of recommender engine;Benchmarking: An International Journal;2020-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3