Author:
Aigner Wolfgang,Miksch Silvia,Schumann Heidrun,Tominski Christian
Abstract
AbstractThis chapter is concerned with computational methods to support the analysis of time-oriented data. A general overview of temporal data analysis is provided and specific application examples will be used for demonstration.
Reference37 articles.
1. Ali, M., A. Alqahtani, M.W. Jones, and X. Xie. 2019. Clustering and classification for time series data in visual analytics: A survey. IEEE Access 7: 181314–181338. https://doi.org/10.1109/ACCESS.2019.2958551.
2. Andrienko, N., G. Andrienko, S. Miksch, H. Schumann, and S. Wrobel. 2021. A Theoretical model for pattern discovery in visual analytics. Visual Informatics 5 (1): 23–42. https://doi.org/10.1016/j.visinf.2020.12.002.
3. Antunes, C.M., and A.L. Oliveira. 2001. Temporal data mining: An overview. In Workshop on Temporal Data Mining at the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).https://www.researchgate.net/publication/284602094.
4. Bade, R., S. Schlechtweg, S. Miksch. 2004. Connecting time-oriented data and information to a coherent interactive visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), 105–112. ACM Press. https://doi.org/10.1145/985692.985706.
5. Bernard, J., C. Bors, M. Bögl, C. Eichner, T. Gschwandtner, S. Miksch, H. Schumann, and J. Kohlhammer. 2018. Combining the automated segmentation and visual analysis of multivariate time series. In Proceedings of the EuroVis Workshop on Visual Analytics (EuroVA), 49–53. Eurographics Association. https://doi.org/10.2312/eurova.20181112.