1. L.M. Adleman, A subexponential algorithmic for the discrete logarithm problem with applications to cryptography, in Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1979), pp. 55–60
2. L.M. Adleman, Algorithmic number theory – the complexity contribution, in Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1994), pp. 88–113
3. L.M. Adleman, The function field Sieve, in Algorithmic Number Theory (ANTS-I). Lecture Notes in Computer Science, vol. 877 (Springer, New York, 1994), pp. 108–121
4. L.M. Adleman, Function field Sieve method for discrete logarithms over finite fields. Inf. Comput. 151, 5–16 (1999)
5. S. Bai, R.P. Brent, On the efficiency of Pollard’s Rho method for discrete logarithms, in Proceedings of the Fourteenth Computing: The Australasian Theory Symposium (CATS 2008), pp. 125–131, ed. by J. Harland, P. Manyem, Wollongong, NSW, Australia, 22–25 January 2008