Neurofuzzy Systems
Author:
Du Ke-Lin,Swamy M. N. S.
Publisher
Springer London
Reference84 articles.
1. Abe, S., & Lan, M. S. (1995). Fuzzy rules extraction directly from numerical data for function approximation. IEEE Transactions on Systems, Man, and Cybernetics, 25(1), 119–129. 2. Angulo, C., Anguita, D., Gonzalez-Abril, L., & Ortega, J. A. (2008). Support vector machines for interval discriminant analysis. Neurocomputing, 71, 1220–1229. 3. Azeem, M. F., Hanmandlu, M., & Ahmad, N. (2000). Generalization of adaptive neuro-fuzzy inference systems. IEEE Transactions on Neural Networks, 11(6), 1332–1346. 4. Baker, M. R., & Patil, R. B. (1998). Universal approximation theorem for interval neural networks. Reliable Computing, 4, 235–239. 5. Batuwita, R., & Palade, V. (2010). FSVM-CIL: Fuzzy support vector machines for class imbalance learning. IEEE Transactions on Fuzzy Systems, 18(3), 558–571.
|
|