Predicting flow resistance in open-channel flows with submerged vegetation

Author:

Cui HanwenORCID,Felder StefanORCID,Kramer MatthiasORCID

Abstract

AbstractIn vegetated flows, hydrodynamic parameters, such as drag coefficient, frontal area and deflected canopy height, influence velocity distributions, mean velocity and flow resistance. Previous studies have focused on flow–structure interaction in sparse vegetation, dense vegetation or transitional canopies, respectively. To date, a unifying approach to estimate hydrodynamic properties of submerged vegetated flows across the full vegetation density spectrum is missing. Herein, published data sets across a wide range of vegetation conditions were re-analysed using a previously proposed four-layer velocity superposition model. For the investigated vegetation conditions, the velocity model was able to match measured velocity distributions and depth-averaged mean velocity. The contribution of each velocity layer to the mean velocity was analyzed, showing that the mixing layer is dominant in transitional canopies with shallow submergence, and that the log-law layer is dominant in denser canopies with deeper submergence. Based upon velocity distributions, an explicit equation for the Darcy–Weisbach friction factors was deduced that is able to predict flow resistance as function of relative submergence. While each velocity distribution could be well described with the four-layer model across the range of vegetation conditions, some data scatter in model parameters was observed. To improve predictive capabilities of the model, future research should focus on detailed velocity measurements with high spatial resolution.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3