Topographic effects on buoyancy driven flows along the slope

Author:

Berntsen JarleORCID,Darelius Elin,Avlesen Helge

Abstract

AbstractThe flow and descent of dense water masses formed in shallow regions of the ocean is an important leg in the global overturning circulation. The dense overflow waters tend to flow along the continental slopes as geostrophically balanced gravity plumes, but may be steered downslope by canyons and ridges cross-cutting the slopes. In that process, entrainment and mixing will be greatly enhanced. Ilicak et al. (Ocean Model 38:71–84, 2011) propose a parameterization to include the effects of corrugations in large scale models by increasing the vertical mixing locally. We re-visit the problem using the terrain-following Bergen Ocean Model and a DOME-inspired idealized topography. It is shown that the applied corrugations can move the core of the plume 800 m down the slope, while enhanced mixing raises the center of gravity by only 1–200 m. The overall effect of a corrugation is hence to lower the center of gravity, suggesting that the parameterization proposed by Ilicak et al. (Ocean Model 38:71–84) will act in the wrong vertical direction, if used on its own. A comparison of two bottom drag parameterizations, show that a parameterization consistent with a no-slip boundary condition is needed to correctly represent Ekman drainage, and that the Ekman drainage contribution to plume descent is comparable to that of the corrugation. Ridges are more effective in steering dense water downward than canyons, and we compare the dynamics between the two settings to explain the difference.

Funder

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3