Prenatal Exposure to General Anesthesia Drug Esketamine Impaired Neurobehavior in Offspring

Author:

Huang RonghuaORCID,Lin BingbiaoORCID,Tian HongyanORCID,Luo QichenORCID,Li YalanORCID

Abstract

AbstractPrenatal exposure to anesthetics has raised increasing attention about the neuronal development in offspring. Animal models are usually used for investigation. As a new drug, esketamine is the s-isoform of ketamine and is twice as potent as the racemic ketamine with less reported adverse effects. Esketamine is currently being used and become more favorable in clinical anesthesia work, including surgeries during pregnancy, yet the effect on the offspring is unknown. The present study aimed to elucidate the effects of gestational administration of esketamine on neuronal development in offspring, using a rat model. Gestational day 14.5 pregnant rats received intravenous injections of esketamine. The postnatal day 0 (P0) hippocampus was digested and cultured in vitro to display the neuronal growth morphology. On Day 4 the in vitro experiments revealed a shorter axon length and fewer dendrite branches in the esketamine group. The results from the EdU- imaging kit showed decreased proliferative capacity in the subventricular zone (SVZ) and dentate gyrus (DG) in both P0 and P30 offspring brains in the esketamine group. Moreover, neurogenesis, neuron maturity and spine density were impaired, resulting in attenuated long-term potentiation (LTP). Compromised hippocampal function accounted for the deficits in neuronal cognition, memory and emotion. The evidence obtained suggests that the neurobehavioral deficit due to prenatal exposure to esketamine may be related to the decrease phosphorylation of CREB and abnormalities in N-methyl-d-aspartic acid receptor subunits. Taken together, these results demonstrate the negative effect of prenatal esketamine exposure on neuronal development in offspring rats. Graphical Abstract G14.5 esketamine administration influenced the neurobehavior of the offspring in adolescence. Poorer neuronal growth and reduced brain proliferative capacity in late gestation and juvenile pups resulted in impaired P30 neuronal plasticity and synaptic spines as well as abnormalities in NMDAR subunits. Attenuated LTP reflected compromised hippocampal function, as confirmed by behavioral tests of cognition, memory and emotions. This figure was completed on the website of Figdraw.

Funder

Bethune Charitable Foundation

The Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3