Neuroprotective and Antioxidant Role of Oxotremorine-M, a Non-selective Muscarinic Acetylcholine Receptors Agonist, in a Cellular Model of Alzheimer Disease

Author:

Nuzzo DomenicoORCID,Frinchi MonicaORCID,Giardina Costanza,Scordino MirianaORCID,Zuccarini Mariachiara,De Simone Chiara,Di Carlo MartaORCID,Belluardo NataleORCID,Mudò GiuseppaORCID,Di Liberto ValentinaORCID

Abstract

AbstractAlzheimer disease (AD) is a multifactorial and age-dependent neurodegenerative disorder, whose pathogenesis, classically associated with the formation of senile plaques and neurofibrillary tangles, is also dependent on oxidative stress and neuroinflammation chronicization. Currently, the standard symptomatic therapy, based on acetylcholinesterase inhibitors, showed a limited therapeutic potential, whereas disease-modifying treatment strategies are still under extensive research. Previous studies have demonstrated that Oxotremorine-M (Oxo), a non-selective muscarinic acetylcholine receptors agonist, exerts neurotrophic functions in primary neurons, and modulates oxidative stress and neuroinflammation phenomena in rat brain. In the light of these findings, in this study, we aimed to investigate the neuroprotective effects of Oxo treatment in an in vitro model of AD, represented by differentiated SH-SY5Y neuroblastoma cells exposed to Aβ1-42 peptide. The results demonstrated that Oxo treatment enhances cell survival, increases neurite length, and counteracts DNA fragmentation induced by Aβ1-42 peptide. The same treatment was also able to block oxidative stress and mitochondria morphological/functional impairment associated with Aβ1-42 cell exposure. Overall, these results suggest that Oxo, by modulating cholinergic neurotransmission, survival, oxidative stress response, and mitochondria functionality, may represent a novel multi-target drug able to achieve a therapeutic synergy in AD. Graphical Abstract Illustration of the main pathological hallmarks and mechanisms underlying AD pathogenesis, including neurodegeneration and oxidative stress, efficiently counteracted by treatment with Oxo, which may represent a promising therapeutic molecule. Created with BioRender.com under academic license.

Funder

Università degli Studi di Palermo

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3