Laser-Induced Axotomy of Human iPSC-Derived and Murine Primary Neurons Decreases Somatic Tau and AT8 Tau Phosphorylation: A Single-Cell Approach to Study Effects of Acute Axonal Damage

Author:

Bell-Simons M.ORCID,Buchholz S.ORCID,Klimek J.,Zempel H.ORCID

Abstract

AbstractThe microtubule-associated protein Tau is highly enriched in axons of brain neurons where it regulates axonal outgrowth, plasticity, and transport. Efficient axonal Tau sorting is critical since somatodendritic Tau missorting is a major hallmark of Alzheimer’s disease and other tauopathies. However, the molecular mechanisms of axonal Tau sorting are still not fully understood. In this study, we aimed to unravel to which extent anterograde protein transport contributes to axonal Tau sorting. We developed a laser-based axotomy approach with single-cell resolution and combined it with spinning disk confocal microscopy enabling multi live-cell monitoring. We cultivated human iPSC-derived cortical neurons and mouse primary forebrain neurons in specialized chambers allowing reliable post-fixation identification and Tau analysis. Using this approach, we achieved high post-axotomy survival rates and observed axonal regrowth in a subset of neurons. When we assessed somatic missorting and phosphorylation levels of endogenous human or murine Tau at different time points after axotomy, we surprisingly did not observe somatic Tau accumulation or hyperphosphorylation, regardless of their regrowing activity, consistent for both models. These results indicate that impairment of anterograde transit of Tau protein and acute axonal damage may not play a role for the development of somatic Tau pathology. In sum, we developed a laser-based axotomy model suitable for studying the impact of different Tau sorting mechanisms in a highly controllable and reproducible setting, and we provide evidence that acute axon loss does not induce somatic Tau accumulation and AT8 Tau phosphorylation. Graphical Abstract UV laser-induced axotomy of human iPSC-derived and mouse primary neurons results in decreased somatic levels of endogenous Tau and AT8 Tau phosphorylation.

Funder

Studienstiftung des Deutschen Volkes

Else Kröner-Fresenius-Stiftung

Deutsche Forschungsgemeinschaft

Universitätsklinikum Köln

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3