Realistische Sensor-Simulationen für den Digital Twin

Author:

Ubezio Barnaba,Ergun SerkanORCID,Zangl Hubert

Abstract

AbstractDigital twins use actual sensor data to replicate the current state of a plant in a virtual model. They can be used to evaluate the current state, predict future behavior, and thus allow to refine control or optimize operation, enable predictive maintenance as well as detection of anomalies and failures.The model of a digital twin includes models of the components, behaviors and dynamics of a system. With the ability to simulate real scenarios, such models can therefore also be used before a plant is actually implemented, e.g., to predict the actual performance, identify potential issues for the implementation and to develop optimal operation strategy and algorithms. Furthermore, interfaces may be defined, implemented, and tested with such models allowing fast and easy commissioning of the physical implementation.Accurate digital twins therefore also need to include realistic sensor models, considering adverse effects that impact their output signals. The proposed work presents approaches for accurate sensor simulations allowing researchers and industries to assess sensor performance, optimize algorithms, and evaluate system-level integration. We address Frequency Modulated Continuous Wave (FMCW) radar sensors and time-of-flight cameras as examples for far-field sensors and capacitive sensors as an example for near-field sensors. The approaches can be transferred to other sensors, e.g., ultrasound sensors, LiDAR sensors and inductive or magnetic sensors so that a wide range of industrial sensors can be covered.The proposed simulations are benchmarked with different tests, including real-world experiments and compared with the corresponding real sensors.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3