A stochastic approach to dynamic participation in energy communities

Author:

Perger TheresiaORCID,Zwickl-Bernhard SebastianORCID,Golab AntoniaORCID,Auer HansORCID

Abstract

AbstractWith energy communities and local electricity markets on the rise, the possibilities for prosumers to be actively involved in the energy system increase, creating more complex settings for energy communities. This paper addresses the following research question: Does having knowledge about the future development in energy communities help make better decisions selecting new participants than without consideration of any future developments? Each year, the community is faced with the exit of existing members and a portfolio of possible new entrants with different characteristics. For this purpose, a bi-level optimization model for dynamic participation in local energy communities with peer-to-peer electricity trading, which is able to select the most suitable new entrants based on the preferences of the members of the original community, is extended to a stochastic dynamic program. The community wants to plan a few years ahead, which includes the following uncertainties: (i) which members leave after each period, and (ii) which are the potential new members willing to join the community. This paper’s contribution is a stochastic optimization approach to evaluate possible future developments and scenarios. The focus lies on the contractual design between the energy community and new entrants; the model calculates the duration of contracts endogenously. The results show a sample energy community’s decision-making process over a horizon of several years, comparing the stochastic approach with a simple deterministic alternative solution.

Funder

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3