Abstract
AbstractLevilactobacillus (L.) brevis TMW 1.2112 is an isolate from wheat beer that produces O2-substituted (1,3)-β-D-glucan, a capsular exopolysaccharide (EPS) from activated sugar nucleotide precursors by use of a glycosyltransferase. Within the genome sequence of L. brevis TMW 1.2112 enzymes of the glycoside hydrolases families were identified. Glycoside hydrolases (GH) are carbohydrate-active enzymes, able to hydrolyse glycosidic bonds. The enzyme β-glucosidase BglB (AZI09_02170) was heterologous expressed in Escherichia coli BL21. BglB has a monomeric structure of 83.5 kDa and is a member of the glycoside hydrolase family 3 (GH 3) which strongly favoured substrates with β-glycosidic bonds. Km was 0.22 mM for pNP β-D-glucopyranoside demonstrating a high affinity of the recombinant enzyme for the substrate. Enzymes able to degrade the (1,3)-β-D-glucan of L. brevis TMW 1.2112 have not yet been described. However, BglB showed only a low hydrolytic activity towards the EPS, which was measured by means of the D-glucose releases. Besides, characterised GH 3 β-glucosidases from various lactic acid bacteria (LAB) were phylogenetically analysed to identify connections in terms of enzymatic activity and β-glucan formation. This revealed that the family of GH 3 β-glucosidases of LABs comprises most likely exo-active enzymes which are not directly associated with the ability of these LAB to produce EPS.
Funder
Bundesministerium für Wirtschaft und Energie
Technische Universität München
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献